Logarithmic Dimension Bounds for the Maximal Function Along a Polynomial Curve

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Dimension Bounds for the Maximal Function along a Polynomial Curve

LetM denote the maximal function along the polynomial curve (γ1t, . . . , γdt ): M( f )(x) = sup r>0 1 2r ∫ |t|≤r | f (x1 − γ1t, . . . , xd − γdt )|dt. We show that the L norm of this operator grows atmost logarithmically with the parameter d: ‖M f ‖L2(Rd) ≤ c log d ‖ f ‖L2(Rd), where c > 0 is an absolute constant. The proof depends on the explicit construction of a “parabolic” semi-group of op...

متن کامل

Bounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Tight Bounds for the VC-Dimension of Piecewise Polynomial Networks

O(ws(s log d+log(dqh/ s))) and O(ws((h/ s) log q) +log(dqh/ s)) are upper bounds for the VC-dimension of a set of neural networks of units with piecewise polynomial activation functions, where s is the depth of the network, h is the number of hidden units, w is the number of adjustable parameters, q is the maximum of the number of polynomial segments of the activation function, and d is the max...

متن کامل

Polynomial Bounds for the VC-Dimension of Sigmoidal, Radial Basis Function, and Sigma-pi Networks

W 2 h 2 is an asymptotic upper bound for the VC-dimension of a large class of neural networks including sigmoidal, radial basis functions, and sigma-pi networks, where h is the number of hidden units and W is the number of adjustable parameters, which extends Karpinski and Macintyre's resent results.* The class is characterized by polynomial input functions and activation functions that are sol...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2010

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-010-9127-2